Glycophorin B is the erythrocyte receptor of Plasmodium falciparum erythrocyte-binding ligand, EBL-1.

نویسندگان

  • D C Ghislaine Mayer
  • Joann Cofie
  • Lubin Jiang
  • Daniel L Hartl
  • Erin Tracy
  • Juraj Kabat
  • Laurence H Mendoza
  • Louis H Miller
چکیده

In the war against Plasmodium, humans have evolved to eliminate or modify proteins on the erythrocyte surface that serve as receptors for parasite invasion, such as the Duffy blood group, a receptor for Plasmodium vivax, and the Gerbich-negative modification of glycophorin C for Plasmodium falciparum. In turn, the parasite counters with expansion and diversification of ligand families. The high degree of polymorphism in glycophorin B found in malaria-endemic regions suggests that it also may be a receptor for Plasmodium, but, to date, none has been identified. We provide evidence from erythrocyte-binding that glycophorin B is a receptor for the P. falciparum protein EBL-1, a member of the Duffy-binding-like erythrocyte-binding protein (DBL-EBP) receptor family. The erythrocyte-binding domain, region 2 of EBL-1, expressed on CHO-K1 cells, bound glycophorin B(+) but not glycophorin B-null erythrocytes. In addition, glycophorin B(+) but not glycophorin B-null erythrocytes adsorbed native EBL-1 from the P. falciparum culture supernatants. Interestingly, the Efe pygmies of the Ituri forest in the Democratic Republic of the Congo have the highest gene frequency of glycophorin B-null in the world, raising the possibility that the DBL-EBP family may have expanded in response to the high frequency of glycophorin B-null in the population.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Plasmodium falciparum Homologue of Plasmodium vivax Reticulocyte Binding Protein (PvRBP1) Defines a Trypsin-resistant Erythrocyte Invasion Pathway

Invasion of erythrocytes by Plasmodium merozoites is an intricate process involving multiple receptor-ligand interactions. The glycophorins and an unknown trypsin sensitive factor are all erythrocyte receptors used during invasion by the major human pathogen Plasmodium falciparum. However, only one erythrocyte receptor, Glycophorin A, has a well-established cognate parasite ligand, the merozoit...

متن کامل

The glycophorin C N-linked glycan is a critical component of the ligand for the Plasmodium falciparum erythrocyte receptor BAEBL.

Plasmodium vivax uses a single member of the Duffy binding-like (DBL) receptor family to invade erythrocytes and is not found in West Africa where its erythrocyte ligand, the Duffy blood group antigen, is missing. In contrast, Plasmodium falciparum expresses four members of the DBL family, and remarkably, single-point mutations of two of these receptors (BAEBL and JESEBL) bind to entirely diffe...

متن کامل

Glycophorin C is the receptor for the Plasmodium falciparum erythrocyte binding ligand PfEBP-2 (baebl).

We report in this paper that glycophorin C (GPC) is the receptor for PfEBP-2 (baebl, EBA-140), the newly identified erythrocyte binding ligand of Plasmodium falciparum. PfEBP-2 is a member of the Duffy binding-like erythrocyte binding protein (DBL-EBP) family. Although several reports have been published characterizing PfEBP-2, the identity of its erythrocytic receptor was still unknown. Using ...

متن کامل

The Baculovirus-Expressed Binding Region of Plasmodium falciparum EBA-140 Ligand and Its Glycophorin C Binding Specificity

The erythrocyte binding ligand 140 (EBA-140) is a member of the Plasmodium falciparum DBL family of erythrocyte binding proteins, which are considered as prospective candidates for malaria vaccine development. The EBA-140 ligand is a paralogue of the well-characterized P. falciparum EBA-175 protein. They share homology of domain structure, including Region II, which consists of two homologous F...

متن کامل

Polymorphisms in erythrocyte binding antigens 140 and 181 affect function and binding but not receptor specificity in Plasmodium falciparum.

Invasion of human erythrocytes by the malaria parasite Plasmodium falciparum utilizes multiple ligand-receptor interactions involving erythrocyte receptors and parasite erythrocyte binding proteins of the Duffy binding-like family. Erythrocyte binding antigen 175 (EBA-175) binds to glycophorin A, the most abundant protein on the human erythrocyte surface and EBA-140 (also known as BAEBL) binds ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 106 13  شماره 

صفحات  -

تاریخ انتشار 2009